
Fig. la). This condition yields an additional relationship between the two parameters (M I 
and M2), closes the system (1.1)-(1.3), and makes the dependence of the coefficients on M l 
single-valued for all flow deviation angles as long as they are not too large. This is why 
the dependence of the optimum permeability coefficient of the wall on M in supersonic flow 
is universal [i]. 

For flow that is supersonic but in the transonic regime, a unique dependence no longer 
exists for the optimum permeability coefficient; it varies along the length of the pipe wall 
in each case and differs for each experiment. To illustrate this fact, we give the example 
of the calculation of a gas flow around a slender wedge at zero angle of attack with a veloc- 
ity slightly greater than the sonic velocity. The half-angle of the wedge is 8 = i~ ' . 

Figure 4 shows how Ropt, normalized to /M~ - i, varies as a function of M I in the region 
above the wedge behind the compression shock. The calculations have been carried out accord- 
ing to the exact gasdynamic equations and tables [4]. 
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AN EXACT SOLUTION FOR THE END EFFECT OF A WING OF FINITE SIZE 

IN SUPERSONIC FLOW 

N. F. Vorob'ev [DC 533.69 

The problem of supersonic flow over a thin wing Df finite size, examined in a linear 
approximation, reduces to solving the wave equation for the velocity potential. The condition 
that the flow does not penetrate the wing surface is then carried to the base plane, and in 
the remainder of this plane (outside the projection of the wing) certain conditions are im- 
posed on the gasdynamic parameters of the flow. The solution of the problem is given in [I] 

! 
when the velocity potential is determined via the normal derivative in the base plane ~U, and 
outside the wing projection we have the condition that the potential goes to zero. The gas- 
dynamic flow parameters (pressure, downwash outside the wing) obtained from this solution 
take on physically invalid infinite values in the vicinity of the subsonic leading edge. 
Expressions are given in [2] for the velocity potential and its derivatives in terms of the 
first and second derivatives of the potential in the base plane, which allows one to apply 
additional boundary conditions and obtain a solution of the flow problem in which the gas- 
dynamic flow parameters are in a class of bounded functions. 

This paper derives formulas for calculating the gasdynamic flow parameters in the case 
when the velocity potential is determined [2] via the " " " ' ,, first derivative ~ and the second 
derivative #~$ (the surface curvature in the incident stream direction) in the base: plane, 
and in the part of the base plane outside the wing projection the condition of continuity of 
the derivative ~ (pressure) is applied. 

i. The velocity potential at the point M(x, y, z) lying in the perturbed region above 
' in the base plane D = 0 from the formula [I] the wing is found via the normal derivative ~N 

= - ~ ~ (~, ~) ~ ~ d~,  ( i .  1 ) 

where ~ = r - l ;  r---- t / ( z - -  ~ ) 2 _ ( z _  ~)2_y2;  (sq- o)!lis the  r e g i o n  of  dependence of  the  p o i n t  M in 
the plane ~ = 0 (Fig. i). Part of the region of dependence s(COOiDiMoC) coincides with the 

Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. i, pp. 
65-70, January-February, 1992. Original article submitted November 26, 1990; revision sub- 
mitted December 28, 1990. 

0021-8944/92/3301-0059512.50 �9 1992 Plenum Publishing Corporation 59 



projection of the wing S on the base plane. The part o(0zDD10z) belongs to the perturbed 
region E of the plane q = 0, lying outside the wing projection in the zone of the influence 
of the lateral edge. In the region S the value ~ is determined by the wing geometry: ~($, 
~) N!=($, ~) [a($, ~) is the slope of the wing surface to the base plane in the direction of 
the x axis]. In the region E (in the gap) the derivative r is unknown .beforehand and is 
to be determined. 

Following integration with respect to the variable ~ and allowing for the relations 

S q~ d~. = In {[(x - -  ~) --i r ] / ] / f (z  -- ~)~ + y~ l, 

(S = 0 

[~ = p ( 5 )  = x - / ( z  - ~)2 + y2 i s  t h e  l i n e  o f  i n t e r s e c t i o n  o f  t h e  c h a r a c t e r i s t i c  c o n e  w i t h  t h e  
v e r t e x  a t  t h e  p o i n t  M w i t h  t h e  p l a n e  q = O] we c a n  w r i t e  Eq .  ( 1 . 1 )  f o r  t h e  p o t e n t i a l  a s  

= J \ "' ~=r (0 ~ (D~ (pd~ds ( 1 . 2 )  
L s+G 

[~ = #-(~) is the equation of the boundary of the perturbed region L(COOzD)]. In deriving 
�9 . | . ~ 

Eq. (1.2)we used the condition that the derzvatlve CB is contlnuous at the lateral edge 
(boundary of the regions S and 7.) and the condition of convergence. 

According to Eq. (1.2), taking account of the relation 09/Ox =--0910~ the derivatives 
of the potential # are represented in the form 

09" = i ' , t r162 ( 1 . 3 )  

L s+~ 
(D' t 

z oz / ~= r  n ~ J J O z  
L s+o 

where S~z d ~ =  (x,~)(z--~) In differentiating Eq. (1.2) the terms of differentiation with 

respect to the variable limits, depending on the variables x and z, go to zero. 

For points M(x, y, z) in the zone with no annular effect (the region a = 0) in Eqs. (1.3) 
and (1.4) the values of ~ and ~ are given by the wing geometry and the gasdynamic flow 
parameters are computed directly from these formulas. 

In the case of the influence of the ends on the section of the line L coincident with 
the projection of the wing leading edge C001, the derivative is defined by the wing geometry 
(r ~ ~[~-(~), ~]), in the section 01D (the wake of the leading characteristic surface) 
~I01D = 0, in part of the region of dependence s the derivative ~ is defined by the wing 
geometry, and in o the value ~$ is unknown beforehand and to be determined. 

The problem of flow over a wing allowing for the end effect (calculating ~ in the re- 
gion Z) was solved in [i] under the condition ~(M~ E) =0 [the potential r is represented 
in the form of Eq. (i.I)]. The solution of this integral equation in a characteristic coor- 
dinate system (xl, z I) with!th e origin at the point 01 (see Fig. I) coinciding with the point of 
transition of the supersonic leading edge to subsonic (lateral) flow is written in the form 

I(~1) 

r (x. z~) = 1 ,!~ ~ (x. ~) Y'/Az~-) Y % d~ (1.5) 
- I 5 - 

where z I = ~(xz), z I = f(x I) are equations of the leading and lateral edges, and ~(x 1, ~i) = 
=(xz, ~i) is a function specified by the wing geometry. 

The second derivative ~yx(M~E) in the gap was obtained in agreement with [2] from 
! 

solution of the integral equation @~(M~E) = 0 [with ~x written in the form of Eq. (1.3)], 
this being a condition for continuity of pressure in the region E: 

(1)yx# (Xl' gl) = -- g V Zl t__ ] (Xl) ; t*(xl) ~' (Xl, ~1) V/Zl (xl)_ ~1-- ~11 d~ 1 + ~ [Xl, ~ (Xl)]. ~;f (Xl) V ]Zl(Xl)_ --* (~1)* (xl) ( [. 6 ) 

60 



�9 t t  _ t ~, 

[(0r162 ~I)= dOni(Xl ' ~I)is a function specified by the wing geometry, and, a[x v @(xl) ] = don[x:,~ ,(xx) ] 
is the angle of attack at the wing leading edge]. 

. i 

For the velocity potential r in [i] and for r in [2], using values of r r in the 

region Z, theorems were proved about the end effect, according to which the potential r and 
the derivative @:~ for points M lying above the wing are written as 

"Sl LI *1 

where s I is part of the region of dependence s of the point M on the projection of the wing 
in the base plane, limited by the line of intersection of the characteristic cone with the 
base plane CMoD I (D I is the point of intersection of this line with the lateral edge), the 
characteristic DIC: and the intercept of the leading edge CC I (the line LI). The values of 

t u 

dOn, dO~ in the region s z and on L I are determined by the wing geometry. 

2. As can be seen from Eq. (1.5), in solving the problem of flow over a thin wing of 
! 

finite span, according to [i] the derivative dOv(TF/~E) (the flow downwash at the gap), as 
the point M comes close to the lateral edge tends to infinity as r -I/2 when r § 0. From the 
solution we also obtain [1] the fact that the derivative dO'~(l~f~ Y~) (pressure) as t:he point M 
draws near to the lateral edge from the wing side has the same order of singularity (apart 
from the case when the lateral edge lies in the plane parallel to the incident stream veloc- 
ity). 

It follows from Eq. (1.6) that the second derivative dOvx(/~f~E) from the solution ob- 
tained according to [2], as the point M moves close to the lateral edge has the same singu- 
larity as does the first derivative dOv(TFl~ Y) of the solution of [i]. 

We now analyze the behavior of the first ~ " ' ' ' derlvatlves #y, ~x, ~z (of the gasdynamic 
parameters of the flow) of the solution [2]. Without distorting the basic properties of 
the solution, in order to reduce the cumbersome calculations in performing the required oper- 
ations of integrating the single and double integrals an analysis was done on the example of 
solving the problem of flow over a flat plate for which the behavior of the gasdynamic param- 
eters of the solution is well known [i, 3]. 

For planar flow in the wing projection region on the base plane S dO'~(M~S)=~=const, 
dO" M ~(  ~S)=0 and Eq. (1.6) is transformed to 

(z~'~ (x 0 I / / (x , )  -- ~ (x~) ( 1.6' ) dO" ( M ~ E ) = - -  
V - / - 

Without restricting generality in order to simplify the calculations we considered flow over 
a plate whose leading edge is a straight line perpendicular to the incident stream velocity, 
and the lateral edge is also a straight line. For this wing the equations of the leading and 
lateral edges will be, respectively z~ = --x:, z: ---- k:x I (I ~ k: ~ oo ; k = i when the lateral edge 
coincides with the direction of the incident stream velocity, k I = ~ when the subsonic 

lateral edge becomes sonic, coinciding with the bow characteristic OiD(x: = 0)], and Eqo 
(1.6') takes the form 

(1.6,,) 
#r 

(M = V :  : -  

The second derivative dovx(3f~E) goes to zero on the bow characteristic and tends to infinity 
in the vicinity of the lateral edge. 

In Eqs. (1.2)-(1.6) for all the derivatives the subscripts denote the direction of dif- 
ferentiation, and they coincide with the direction of the coordinate axes of the original 

r~ 
system (x, y, z) (which is not a characteristic). In order for the, first derivative ~yx • 
(M ~ E) to be determined from the value of the second derivative Ov(M~ Z), it is appropriate 
to rewrite Eq. (1.6") in (x, z) coordinates: 

( : .6 ' " )  
O~m(M~E) = VS~Vz----=Txx" 

The coordinate origin of the (x, z) system coincides with the origin of the characteristic 
system (Xl, Zl), located at the corner point of transition of the wing leading edge to the 
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lateral edge (Fig. 2). 
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The coordinates are connected by the relations x = (x I + zl)/J2, 
z = (z I - xl)/~2, and the tangents of the angles of inclination in the lateral edge equations 
z = kx, z I = klx I by the dependence k = (k I - l)/(k I + i). When the direction of the lateral 
edge changes from coinciding with the incident flow velocity to coinciding with the bow char- 
acteristic 0D the parameters kl, k vary in the limits i~kt~ ~, 0~k~l. 

After integrating both parts of Eq. (1.6'") with respect to x we find the first deriva- 
tive to be 

' ~ I~_~arcsin(l+k)z--2kx ~arcsin (t+k)z--2z } @vim ~ X) = - -  ] / ~ =  ( i - - k ) z  ~ - - Z 7  +,z+b .  ( 2 . 1 )  

The f l o w  a b o u t  t h e  c o r n e r  p o i n t  o f  t h e  f l a t  p l a t e  p o s s e s s e s  c o n i c a l  s y m m e t r y ,  and Eq. ( 2 . 1 )  
can be written in the form 

, ( l + k ) - - 2 k 7  ( t + k ) - -  x z 
C v ( M ~ X  ) = _  a i a r c s i n  i - - k  + a r c s i n  + a  1 + b ,  ( 2 . 2 )  

~--k  

where  k<~z/x<~i; O < k < i .  The d e r i v a t i v e  r  i s  a f u n c t i o n  bounded  in  t h e  e n t i r e  
r e g i o n  Z, i n c l u d i n g  on t h e  c h a r a c t e r i s t i c  l i n e s :  t h e  bow c h a r a c t e r i s t i c  (z  = x ) ,  and t h e  
l a t e r a l  c h a r a c t e r i s t i c  (z  = k x ) .  

The s o l u t i o n  ( 2 . 2 )  i s  a r b i t r a r y  i n  t h e  c h o i c e  o f  t h e  two c o n s t a n t s  a z and b and t h e s e  
can  be  u s e d  t o  impose  t h e  a d d i t i o n a l  c o n d i t i o n s  c o r r e s p o n d i n g  t o  t h e  p h y s i c a l  p i c t u r e  o f  t h e  
f l o w :  on t h e  bow c h a r a c t e r i s t i c  

I 

and on the lateral characteristic 

2 ~ 2  - - 1  + a t +  b = O ;  ( 2 . 3 )  

) t 

O v ( M ~ Z ) =  ~ t - - t  +kal+b=o~. ( 2 , 4 )  

These conditions are met for all 0 < k < i. For the sonic edge (k = i), when it coincides 
with the bow characteristic, conditions (2.3) and (2.4) become contradictory. 

There is a special case when the lateral edge is parallel to the incident stream velocity 
(k = 0). On integration of Eq. (1.6'") with k = 0 we have 

r u''(M ~ E) = a~]/~ - -  t - -  arctg + a 1 ~- + b. ( 2 .5  ) 

Hence it can be seen that for such a wing the flow downwash in the vicinity of the lateral 
edge (z = 0) tends to infinity. 
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The behavior of the gasdynamic parameters ~x, ~z, according to Eqs. (1.3) and (i.4) on 
the properties of the derivatives ~, ~, given in region S by the wing geometry and in 
region E determined by Eqs. (1.6'"') and (2.2). In Eqs. (1.3) and (1.4) we substitute the 
corresponding values of the derivatives ~, ~g and perform the rather laborious process of 
computing the integrals which can be obtained in final form. It is more convenient to perform 
the computation in the characteristic variables (xl, zl). The region of influence of the 
lateral edge, bounded by the bow characteristics OD ($i = 0), OC (~i = 0) is divided into 
three: region i on the wing, adjoining the wing zone AOC, where there is no end effect, 
bounded by the characteristic OC and the line OE (C~ = $l); region 2 on the wing bounded by 
the line OE and the lateral edge OB (r = ki$i); and region 3, coincident with region E, and 
bounded by the edge OB and the characteristic OD (see Fig. 2). The point M belonging to 
these regions we will designate below as MI, M2, and M 3. 

After performing all the computations for ~, ~., we obtain the compact expressions: 

O~ ( g  (}lXl - -  Z1) - -  (k 1 - ~ ) Z  l }; (~) ,  
�9 ~ (M~, M2) = --h- ~ -  + arcsin k~ (x I -~- ~1) X (M~) = O; ( 2 . 6 )  

(~)z ( M I , / 2 )  ~--- - -  205 -n I k l  -~- I V(k-~l-1 ~ ~) Z 1 + V k l X l  - -  Z l 
,n- V i-- xl-h I ( 2 . 7 )  

o~ (M~) = 0. 

According to Eq. (2.6), at the boundary with the region that does not influence that 
lateral edge (the line OC, z I = 0) ~ coincides with the appropriate solution for a flat plate 
of infinite size: r 0 = ~. On the lateral edge, as must follow from the statement of the 
problem, ~Izl =klx I = 0. On the wing, within the perturbed lateral edge region in the pres-. ..... 
sure distribution there are no singularities, including also the line ~I = ~i, where 

r 1~1=~1 = -~- - -  arcsin kl (k 1 q_ l) " 

The solid line on Fig. 3 is a qualitative picture of the pressure distribution at the 
section x = const, and the broken line is the pressure distribution from [i]. Figure 3 also 
shows a qualitative picture of the behavior of the derivative ~ in the gap, according to 
Eq. (2.2), taking account of conditions (2.3) and (2.4) (solid line) and the solution of 
Eq. (1.5) on the basis of [i] (broken line). 

! 
The derivative ~z characterizes the transverse overflow in the base plane D = 0. Ac- 

cording to Eq. (2.7) in the gap, just as on the flat plate of infinite size, there is no 
transverse overflow [r = 0]. The solution in the perturbed lateral edge region on the 
wing ~z(M1, M 2) is joined continuously with the solution in the gap and on the infinite flat 
plate (Fig. 3). On the line ~i = ~l which passes through the point of bending of edges in 

l 
the direction of the incident flow, ~z has a singularity. On this line is located a singu- 
larity of the longitudinal vortex type, which rarely does not influence the components @~, 

r (Fig. 3). In the case where the lateral edge is parallel to the incident flow velocity, 
the singularity coincides with the edge, which is reflected in the derivative @~ at the edge 
[ E q .  ( 2 . 5 ) ] .  

f! Thus, if in the case of an edge effect involving ~n~ as the governing parameter we 

' = 0 in the base plane outside the wing projection, then the start from the condition Cx 
gasdynamic flow parameters (the first derivatives of the potential) at the subsonic edge 
assume finite values, in contrast with the solution of [I]. Reference [i] dealt with 
symmetric (unseparated) flow over a wing of finite size. In the solution examined the 
author imposed the condition of attachment on the subsonic edges, corresponding to the 
picture of separated flow over a wing of finite size. 
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